기본:
- Github Page: https://github.com/syshin0116
- Git Blog: https://syshin0116.github.io
포트폴리오:
대회
- 데이콘 Basic 추석 맞이 추석 선물 수요량 예측 AI 경진대회
- 데이콘 월간 데이콘 쇼츠 - 뉴스 기사 레이블 복구 해커톤
- 데이콘 제1회 신약개발 AI 경진대회
- 2023 스마트농업 AI 경진대회
새싹 이전:
머신러닝 딥러닝을 활용한 공공데이터 분석가 양성과정
HiTrip(여행지 추천 웹사이트)
[데이콘]서울 시민데이터를 활용한 도시문제 해결- 새로운 자전거도로 노선 제안
새싹:
부동산 경매 낙찰가 예측
부동산 관련 뉴스기사 분석(Streamlit page)
한국어 대화 요약
새싹 영등포 캠퍼스 생일 축하 노래
Men in Black(차량 블랙박스 영상속 도로 교통 법규 위반 차량 감지)
Men-in-Black
1. 개요
- 도로 교통 법규 위반 차량 감지
- 도로 위의 일상적인 교통 법규 위반, 특히 주요 도로에서의 끼어들기 같은 행위는 많은 운전자들에게 불편함과 안전 위험을 초래합니다. 하지만 위반 행위를 목격하여도, 주행 중 신고가 어려워 신고를 미루다 결국 하지 않게 되는 경우가 많습니다.
- 따라서 본 프로젝트에서 영상을 통해 교통 법규 위반을 자동으로 탐지하고 분류하는 모델을 개발하고자 했습니다.
- 이 모델을 다양한 법규 위반 상황을 식별하고 자동 신고 기능을 포함하여, 안전하고 공장한 도로 환경 조성에 기여하고자 합니다.
2. 프로젝트 구성 및 담당자
Line Violation Detection by 진한별
Details
Traffic Light Detection by 최우석
Details
License Plate Recognition by 신승엽
Details
## 진행 과정: 1. 차량 감지(Vehicle Detection) 2. 번호판 감지(License Plate Detection) 3. OCR(Optical Character Recognition) ## 1. 차량 감지(Vehicle Detection) - Model: Yolov8n, Yolov8m - Dataset: COCO Dataset - 330K images (>200K labeled) - 1.5 million object instances - 80 object categories - Classes: Car, Motorcycle, Bus, Truck YOLO model structure ![](https://i.imgur.com/5x23XhQ.png) ### 차량 트래킹(Object Tracking) - model: Sort - A simple online and realtime tracking algorithm for 2D multiple object tracking in video sequences - [GitHub - abewley/sort: Simple, online, and realtime tracking of multiple objects in a video sequence.](https://github.com/abewley/sort) ### 2. 번호판 감지(License Plate Detection) - Model: Yolov8m 50 epoch, 120epoch - Dataset: \[Roboflow][License Plate Recognition Object Detection Dataset (v4, resized640_aug3x-ACCURATE) by Roboflow Universe Projects](https://universe.roboflow.com/roboflow-universe-projects/license-plate-recognition-rxg4e/dataset/4 "https://universe.roboflow.com/roboflow-universe-projects/license-plate-recognition-rxg4e/dataset/4") - 24242 images - Augmentations - Flip: Horizontal - Crop: 0% Minimum Zoom, 15% Maximum Zoom - Rotation: Between -10° and +10° - Shear: ±2° Horizontal, ±2° Vertical - Grayscale: Apply to 10% of images - Hue: Between -15° and +15° - Saturation: Between -15% and +15% - Brightness: Between -15% and +15% - Exposure: Between -15% and +15% - Blur: Up to 0.5px - Cutout: 5 boxes with 2% size each - Training: hyper parameters: `task=detect, mode=train, model=yolov8m.pt, data=/content/License_plate_recognition/dataset/License-Plate-Recognition-4/data.yaml, epochs=500, patience=50, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=license_plate_detection_yolov8m, name=None, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, show=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, vid_stride=1, stream_buffer=False, line_width=None, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, boxes=True, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0, cfg=None, tracker=botsort.yaml, save_dir=license_plate_detection_yolov8m/train` model summary: `from n params module arguments 0 -1 1 1392 ultralytics.nn.modules.conv.Conv [3, 48, 3, 2] 1 -1 1 41664 ultralytics.nn.modules.conv.Conv [48, 96, 3, 2] 2 -1 2 111360 ultralytics.nn.modules.block.C2f [96, 96, 2, True] 3 -1 1 166272 ultralytics.nn.modules.conv.Conv [96, 192, 3, 2] 4 -1 4 813312 ultralytics.nn.modules.block.C2f [192, 192, 4, True] 5 -1 1 664320 ultralytics.nn.modules.conv.Conv [192, 384, 3, 2] 6 -1 4 3248640 ultralytics.nn.modules.block.C2f [384, 384, 4, True] 7 -1 1 1991808 ultralytics.nn.modules.conv.Conv [384, 576, 3, 2] 8 -1 2 3985920 ultralytics.nn.modules.block.C2f [576, 576, 2, True] 9 -1 1 831168 ultralytics.nn.modules.block.SPPF [576, 576, 5] 10 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 11 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1] 12 -1 2 1993728 ultralytics.nn.modules.block.C2f [960, 384, 2] 13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 14 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1] 15 -1 2 517632 ultralytics.nn.modules.block.C2f [576, 192, 2] 16 -1 1 332160 ultralytics.nn.modules.conv.Conv [192, 192, 3, 2] 17 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1] 18 -1 2 1846272 ultralytics.nn.modules.block.C2f [576, 384, 2] 19 -1 1 1327872 ultralytics.nn.modules.conv.Conv [384, 384, 3, 2] 20 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1] 21 -1 2 4207104 ultralytics.nn.modules.block.C2f [960, 576, 2] 22 [15, 18, 21] 1 3776275 ultralytics.nn.modules.head.Detect [1, [192, 384, 576]] Model summary: 295 layers, 25856899 parameters, 25856883 gradients` optimizer: SGD(lr=0.01, momentum=0.9) with parameter groups 77 weight(decay=0.0), 84 weight(decay=0.0005), 83 bias(decay=0.0) Image sizes: 640 train, 640 val #### WandB ![](https://i.imgur.com/wKFGARx.png) ![](https://i.imgur.com/ZwzZCZh.png) ![](https://i.imgur.com/iGsTw9O.png) ![](https://i.imgur.com/AKzo4Tz.png) ![](https://i.imgur.com/UKG85j0.png) ![](https://i.imgur.com/1B8dgOW.png) ## 3. OCR(Optical Character Recognition) Model: EasyOCR Preprocessing steps: 1. **Grayscale Conversion**: This simplifies the image by removing color information, making further processing faster and focusing on intensity. 2. **Contrast Enhancement with CLAHE (Contrast Limited Adaptive Histogram Equalization)**: Improves the contrast of the image, making details more distinct, especially useful in varying lighting conditions. 3. **Gaussian Blur**: Reduces noise and smoothes the image, which can help in reducing false edges detected in the subsequent edge detection step. 4. **Canny Edge Detection**: Identifies edges in the image. This is useful for finding the boundaries of objects, in this case, the license plate. 5. **Finding Contours and Perspective Transformation**: Identifies contours in the image and, if a rectangular contour (assumed to be the license plate) is found, applies a perspective transformation to get a front-facing view of the license plate. Original Image: ![](https://i.imgur.com/63v2mMO.png) Detected Car: ![](https://i.imgur.com/50zAgWN.png) Grayscale: ![](https://i.imgur.com/3h2XYY4.png) CLAHE: ![](https://i.imgur.com/Nt70a3p.png) Gaussian Blur: ![](https://i.imgur.com/I0Cg8wH.png) Canny Edge Detection: ![](https://i.imgur.com/vEbTsXy.png) ## Attempts and Failure: - Tracking cars with yolov8: - worse outputs compared to Sort, took longer time→ attempted at early stages, improved output expected - Clips from Dashboard cam: - Car and License Plates were well detected, but video quality too low for OCR - phenomenon occurred more frequently when relative speed of vehicle was faster ## Room for Improvements: - Try variety of Object Detection models for comparison - Try variety of OCR models for comparison(TesseractOCR, PaddleOCR) - Enhance Video Quality for better detection and recognition - Try Segmentation3. 데이터셋 & 사용 툴
COCO Dataset
- 330K images (>200K labeled)
- 1.5 million object instances
- 80 object categories
- Classes: Car, Motorcycle, Bus, Truck
[Roboflow]License Plate Recognition Object Detection Dataset (v4, resized640_aug3x-ACCURATE)
- 24242 images
- 데이터 증강(Augmentation)
- Flip: Horizontal
- Crop: 0% Minimum Zoom, 15% Maximum Zoom
- Rotation: Between -10° and +10°
- Shear: ±2° Horizontal, ±2° Vertical
- Grayscale: Apply to 10% of images
- Hue: Between -15° and +15°
- Saturation: Between -15% and +15%
- Brightness: Between -15% and +15%
- Exposure: Between -15% and +15%
- Blur: Up to 0.5px
- Cutout: 5 boxes with 2% size each
#### [AIHUB]차로 위반 영상 데이터
- 80,000장 이미지
- 원시 데이터 포맥 예시(동영상)
- MP4 포맷의 동영상 클립
- FHD 해상도
- 초당 5 프레임
- 원천데이터 포맷 예시(이미지 추출 및 비식별화 이후)
- JPG 포맥 이미지 실 예시
- FHD 해상도
- 비식별화 처리(사람얼굴, 자동차 번호판, 개인 전화번호 등)
4. 사용 툴
5. 프로젝트 일정
1. 개요
- 도로 교통 법규 위반 차량 감지
- 도로 위의 일상적인 교통 법규 위반, 특히 주요 도로에서의 끼어들기 같은 행위는 많은 운전자들에게 불편함과 안전 위험을 초래합니다. 하지만 위반 행위를 목격하여도, 주행 중 신고가 어려워 신고를 미루다 결국 하지 않게 되는 경우가 많습니다.
- 따라서 본 프로젝트에서 영상을 통해 교통 법규 위반을 자동으로 탐지하고 분류하는 모델을 개발하고자 했습니다.
- 이 모델을 다양한 법규 위반 상황을 식별하고 자동 신고 기능을 포함하여, 안전하고 공장한 도로 환경 조성에 기여하고자 합니다.
2. 프로젝트 구성 및 담당자
Line Violation Detection by 진한별
Details
## 진행 과정: 1. 차량 인식 2. 차선 인식 3. 위반 탐지지 ## 모델 구성 및 분류: ### 1. 차량 인식 모델 a. 모델 구성 ⅰ. Detection Model : Mask R-CNN ⅱ. BackBone Network : ResNet101 ⅲ. BackBone Pre-trained : torchvision://resnet101 ⅳ. Loss function : SeesawLoss ⅴ. Optimizer : SGD, lr 초기값: 1e-6 b. Class 분류 ⅰ. 이륜차(vehicle_bike) : 10066 ⅱ. 버스(vehicle_bus) : 75198 ⅲ. 승용차(vehicle_car) : 232013 ⅳ. 트럭(vehicle_truck) : 28905 ### 2. 차선 인식 모델 a. 모델 구성 ⅰ. Detection Model : FCN(Fully Convolutional Network) ⅱ. BackBone Network : ResNet50 ⅲ. Loss function : FocalLoss ⅳ. Optimizer : Adam, lr 초기값: 0.001 b. Class 분류 ⅰ. 색상별 1) 청색(lane_blue) : 133654 2) 갓길차선(lane_shoulder) : 55639 3) 흰색(lane_white) : 128181 4) 황색(lane_yellow) : 29554 ⅱ. 타입별 1) 1줄 점선(single_dashed) : 78953 2) 1줄 실선(single_solid) : 181342 3) 2줄 실선(double_solid) : 84914 4) 좌점선_우실선(left_dashed_double) : 1095 5) 좌실선_우점선(right_dashed_double) : 724 ### 3. 위반 탐지 모델 a. 모델 구성 ⅰ. Detection Model : ResNet18 ⅱ. Loss function : CrossEntropyLoss ⅲ. Optimizer : SGD, lr 초기값: 0.001 b. Class 분류 ⅰ. 정상(normal): 197618 ⅱ. 위험(danger): 31229 ⅲ. 위반(violation): 117335 c. 위반 탐지 과정 ⅰ. 정상 ![image](https://github.com/SeSAC-Men-in-Black/Men-in-Black/assets/140053617/2e074200-ff13-47c8-9781-ea10440611ae) ![image](https://github.com/SeSAC-Men-in-Black/Men-in-Black/assets/140053617/a0ce2c45-06a2-4d8b-a9a9-1856df83fd89) ![image](https://github.com/SeSAC-Men-in-Black/Men-in-Black/assets/140053617/8fc3ccee-c625-48f9-a12c-6e77046a8507) ⅱ. 위험 ![image](https://github.com/SeSAC-Men-in-Black/Men-in-Black/assets/140053617/7d8d9cea-9e1d-4f7b-8391-93abd1474d1b) ![image](https://github.com/SeSAC-Men-in-Black/Men-in-Black/assets/140053617/f463b8a0-07ad-4f24-b5fb-65cd146aa369) ![image](https://github.com/SeSAC-Men-in-Black/Men-in-Black/assets/140053617/4e0f5535-8d59-4045-87c9-d13ea7040ba2) ⅲ. 위반 ![image](https://github.com/SeSAC-Men-in-Black/Men-in-Black/assets/140053617/139735ea-e164-4e1f-9834-fd0bec7cd076) ![image](https://github.com/SeSAC-Men-in-Black/Men-in-Black/assets/140053617/8cc27f2e-a4d5-484e-b559-e01796cd88c3) ![image](https://github.com/SeSAC-Men-in-Black/Men-in-Black/assets/140053617/1c059bb2-0456-4fd9-bcd8-7a576c1e315c)Traffic Light Recognition by 최우석
Details
License Plate Recognition by 신승엽
Details
## 진행 과정: 1. 차량 감지(Vehicle Detection) 2. 번호판 감지(License Plate Detection) 3. OCR(Optical Character Recognition) ## 1. 차량 감지(Vehicle Detection) - Model: Yolov8n, Yolov8m - Dataset: COCO Dataset - 330K images (>200K labeled) - 1.5 million object instances - 80 object categories - Classes: Car, Motorcycle, Bus, Truck YOLO model structure ![](https://i.imgur.com/eFgToyo.png) ### 차량 트래킹(Object Tracking) - model: Sort - A simple online and realtime tracking algorithm for 2D multiple object tracking in video sequences - [GitHub - abewley/sort: Simple, online, and realtime tracking of multiple objects in a video sequence.](https://github.com/abewley/sort) ### 2. 번호판 감지(License Plate Detection) - Model: Yolov8m 50 epoch, 120epoch - Dataset: \[Roboflow][License Plate Recognition Object Detection Dataset (v4, resized640_aug3x-ACCURATE) by Roboflow Universe Projects](https://universe.roboflow.com/roboflow-universe-projects/license-plate-recognition-rxg4e/dataset/4 "https://universe.roboflow.com/roboflow-universe-projects/license-plate-recognition-rxg4e/dataset/4") - 24242 images - Augmentations - Flip: Horizontal - Crop: 0% Minimum Zoom, 15% Maximum Zoom - Rotation: Between -10° and +10° - Shear: ±2° Horizontal, ±2° Vertical - Grayscale: Apply to 10% of images - Hue: Between -15° and +15° - Saturation: Between -15% and +15% - Brightness: Between -15% and +15% - Exposure: Between -15% and +15% - Blur: Up to 0.5px - Cutout: 5 boxes with 2% size each - Training: hyper parameters: `task=detect, mode=train, model=yolov8m.pt, data=/content/License_plate_recognition/dataset/License-Plate-Recognition-4/data.yaml, epochs=500, patience=50, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=license_plate_detection_yolov8m, name=None, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, show=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, vid_stride=1, stream_buffer=False, line_width=None, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, boxes=True, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0, cfg=None, tracker=botsort.yaml, save_dir=license_plate_detection_yolov8m/train` model summary: `from n params module arguments 0 -1 1 1392 ultralytics.nn.modules.conv.Conv [3, 48, 3, 2] 1 -1 1 41664 ultralytics.nn.modules.conv.Conv [48, 96, 3, 2] 2 -1 2 111360 ultralytics.nn.modules.block.C2f [96, 96, 2, True] 3 -1 1 166272 ultralytics.nn.modules.conv.Conv [96, 192, 3, 2] 4 -1 4 813312 ultralytics.nn.modules.block.C2f [192, 192, 4, True] 5 -1 1 664320 ultralytics.nn.modules.conv.Conv [192, 384, 3, 2] 6 -1 4 3248640 ultralytics.nn.modules.block.C2f [384, 384, 4, True] 7 -1 1 1991808 ultralytics.nn.modules.conv.Conv [384, 576, 3, 2] 8 -1 2 3985920 ultralytics.nn.modules.block.C2f [576, 576, 2, True] 9 -1 1 831168 ultralytics.nn.modules.block.SPPF [576, 576, 5] 10 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 11 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1] 12 -1 2 1993728 ultralytics.nn.modules.block.C2f [960, 384, 2] 13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 14 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1] 15 -1 2 517632 ultralytics.nn.modules.block.C2f [576, 192, 2] 16 -1 1 332160 ultralytics.nn.modules.conv.Conv [192, 192, 3, 2] 17 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1] 18 -1 2 1846272 ultralytics.nn.modules.block.C2f [576, 384, 2] 19 -1 1 1327872 ultralytics.nn.modules.conv.Conv [384, 384, 3, 2] 20 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1] 21 -1 2 4207104 ultralytics.nn.modules.block.C2f [960, 576, 2] 22 [15, 18, 21] 1 3776275 ultralytics.nn.modules.head.Detect [1, [192, 384, 576]] Model summary: 295 layers, 25856899 parameters, 25856883 gradients` optimizer: SGD(lr=0.01, momentum=0.9) with parameter groups 77 weight(decay=0.0), 84 weight(decay=0.0005), 83 bias(decay=0.0) Image sizes: 640 train, 640 val #### WandB ![](https://i.imgur.com/wKFGARx.png) ![](https://i.imgur.com/ZwzZCZh.png) ![](https://i.imgur.com/iGsTw9O.png) ![](https://i.imgur.com/AKzo4Tz.png) ![](https://i.imgur.com/UKG85j0.png) ![](https://i.imgur.com/1B8dgOW.png) ## 3. OCR(Optical Character Recognition) Model: EasyOCR Preprocessing steps: 1. **Grayscale Conversion**: This simplifies the image by removing color information, making further processing faster and focusing on intensity. 2. **Contrast Enhancement with CLAHE (Contrast Limited Adaptive Histogram Equalization)**: Improves the contrast of the image, making details more distinct, especially useful in varying lighting conditions. 3. **Gaussian Blur**: Reduces noise and smoothes the image, which can help in reducing false edges detected in the subsequent edge detection step. 4. **Canny Edge Detection**: Identifies edges in the image. This is useful for finding the boundaries of objects, in this case, the license plate. 5. **Finding Contours and Perspective Transformation**: Identifies contours in the image and, if a rectangular contour (assumed to be the license plate) is found, applies a perspective transformation to get a front-facing view of the license plate. Original Image: ![](https://i.imgur.com/63v2mMO.png) Detected Car: ![](https://i.imgur.com/50zAgWN.png) Grayscale: ![](https://i.imgur.com/3h2XYY4.png) CLAHE: ![](https://i.imgur.com/Nt70a3p.png) Gaussian Blur: ![](https://i.imgur.com/I0Cg8wH.png) Canny Edge Detection: ![](https://i.imgur.com/vEbTsXy.png) ## Attempts and Failure: - Tracking cars with yolov8: - worse outputs compared to Sort, took longer time→ attempted at early stages, improved output expected - Clips from Dashboard cam: - Car and License Plates were well detected, but video quality too low for OCR - phenomenon occurred more frequently when relative speed of vehicle was faster ## Room for Improvements: - Try variety of Object Detection models for comparison - Try variety of OCR models for comparison(TesseractOCR, PaddleOCR) - Enhance Video Quality for better detection and recognition - Try SegmentationMonocular Depth Estimation
- ZoeDepth by 신승엽
- VDE by 진한별
- MonoDepth2 by 이현지
- End-to-end-Learning by 최우석
3. 데이터셋
COCO Dataset
- 330K images (>200K labeled)
- 1.5 million object instances
- 80 object categories
- Classes: Car, Motorcycle, Bus, Truck
[Roboflow]License Plate Recognition Object Detection Dataset (v4, resized640_aug3x-ACCURATE)
- 24242 images
- 데이터 증강(Augmentation)
- Flip: Horizontal
- Crop: 0% Minimum Zoom, 15% Maximum Zoom
- Rotation: Between -10° and +10°
- Shear: ±2° Horizontal, ±2° Vertical
- Grayscale: Apply to 10% of images
- Hue: Between -15° and +15°
- Saturation: Between -15% and +15%
- Brightness: Between -15% and +15%
- Exposure: Between -15% and +15%
- Blur: Up to 0.5px
- Cutout: 5 boxes with 2% size each
#### [AIHUB]차로 위반 영상 데이터
- 80,000장 이미지
- 원시 데이터 포맥 예시(동영상)
- MP4 포맷의 동영상 클립
- FHD 해상도
- 초당 5 프레임
- 원천데이터 포맷 예시(이미지 추출 및 비식별화 이후)
- JPG 포맥 이미지 실 예시
- FHD 해상도
- 비식별화 처리(사람얼굴, 자동차 번호판, 개인 전화번호 등)
4. 사용 툴
5. 프로젝트 일정
6. 모델 구조
7. 참고 문헌
- Bhat, Shariq Farooq, et al. “Zoedepth: Zero-Shot Transfer by Combining Relative and Metric Depth.” arXiv.Org, 23 Feb. 2023, arxiv.org/abs/2302.12288.
- Birkl, Reiner, et al. “Midas V3.1 – a Model Zoo for Robust Monocular Relative Depth Estimation.” arXiv.Org, 26 July 2023, arxiv.org/abs/2307.14460.
- Godard, Clément, et al. “Digging into Self-Supervised Monocular Depth Estimation.” arXiv.Org, 17 Aug. 2019, arxiv.org/abs/1806.01260.
- He, Kaiming, et al. “Mask R-CNN.” arXiv.Org, 24 Jan. 2018, arxiv.org/abs/1703.06870.
- Lee, Seungyoo, et al. “Vehicle Distance Estimation from a Monocular Camera for Advanced Driver Assistance Systems.” MDPI, Multidisciplinary Digital Publishing Institute, 15 Dec. 2022, www.mdpi.com/2073-8994/14/12/2657.
- Lin, Tsung-Yi, et al. “Microsoft Coco: Common Objects in Context.” arXiv.Org, 21 Feb. 2015, arxiv.org/abs/1405.0312.
- Ranftl, René, et al. “Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-Shot Cross-Dataset Transfer.” arXiv.Org, 25 Aug. 2020, arxiv.org/abs/1907.01341.
- Reis, Dillon, et al. “Real-Time Flying Object Detection with Yolov8.” arXiv.Org, 17 May 2023, arxiv.org/abs/2305.09972.
- Song, Zhenbo, et al. “End-to-End Learning for Inter-Vehicle Distance and Relative Velocity Estimation in ADAS with a Monocular Camera.” arXiv.Org, 9 June 2020, arxiv.org/abs/2006.04082.